Явление резонанса. Что такое резонанс — его виды (звуковой, когнитивный), а также польза и опасность резонанса Что называется резонансом как он проявляется

Мы часто слышим слово резонанс: «общественный резонанс», «событие, вызвавшее резонанс», «резонансная частота». Вполне привычные и обыденные фразы. Но можете ли вы точно сказать, что такое резонанс?

Если ответ отскочил у вас от зубов, мы вами по-настоящему гордимся! Ну а если тема «резонанс в физике» вызывает вопросы, то советуем прочесть нашу статью, где мы подробно, понятно и кратко расскажем о таком явлении как резонанс.

Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.

Колебания и частота

Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.

Простейший пример колебаний - катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания.

На рисунке ниже опишем, какими могут быть колебания.


Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний - это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Частота колебаний (измеряется в Герцах) - это количество колебаний в единицу времени. 1 Герц - это одно колебание за одну секунду.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.


Суть явления резонанса

Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.

Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.

Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.

Примеры резонанса

Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным. Однако струны неспроста устанавливают над корпусом – резонатором. Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать.

Еще один пример наблюдения резонанса, с которым мы сталкиваемся - круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.

Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.


Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.

Напоследок предлагаем посмотреть видео на тему «резонанс» и убедиться в том, что наука может быть увлекательной и интересной. Наш сервис поможет с любой работой: от реферата "Сеть интернет и киберпреступность" до курсовой по физике колебаний или эссе по литературе.

Из курса обучения в школе и институте многие вынесли определение резонанса, как явления постепенного или резкого возрастания амплитуды колебаний некоторого тела, когда к нему прикладывается внешняя сила с определенной частотой. Однако ответить практическими примерами на вопрос, что такое резонанс, могут немногие.

Физическое определение и привязка к объектам

Резонанс, согласно определению, можно понять как достаточно простой процесс:

  • существует тело, находящееся в состоянии покоя или колеблющееся с определенной частотой и амплитудой;
  • на него действует внешняя сила с собственной частотой;
  • в случае, когда частота внешнего воздействия совпадает с собственной частотой рассматриваемого тела, возникает постепенное или резкое возрастание амплитуды колебаний.

Однако, на практике явление рассматривается в виде гораздо более сложной системы. В частности, тело может быть представлено не как единый объект, а сложная структура. Резонанс возникает при совпадении частоты внешней силы с так называемой суммарной эффективной колебательной частотой системы.

Резонанс, если рассматривать его с позиций физического определения, непременно должен приводить к разрушению объекта. Однако, на практике существует понятие добротности колебательной системы. В зависимости от ее значения, резонанс может приводить к различным эффектам:

  • при низкой добротности система не способна в большой мере сохранять поступающие извне колебания. Поэтому наблюдается постепенное повышение амплитуды собственных колебаний до того уровня, когда сопротивление материалов или соединений не приводит к стабильному состоянию;
  • высокая, близкая к единице добротность - самая опасная среда, в которой резонанс приводит, зачастую, к необратимым последствиям. Среди них может быть как механическое разрушение объектов, так и выделение большого количества тепла на уровнях, которые могут привести к возгоранию.

Также, резонанс возникает не только при действии внешней силы колебательного характера. Степень и характер реакции системы, в большой степени, отвечает за последствия действия направленных извне сил. Поэтому резонанс может возникнуть в самых разных случаях.

Хрестоматийный пример

Самый употребительный пример, которым описывается явление резонанса - это случай, когда рота солдат шла по мосту и обрушила его. С физической точки зрения в этом явлении нет ничего сверхъестественного. Шагая в ногу, солдаты вызвали колебания , которые совпали с собственной эффективной колебательной частотой системы моста.

Множество людей посмеивалось над данным примером, считая явление только теоретически возможным. Но достижения технического прогресса доказали теорию.

В сети существует реальное видео поведения пешеходного моста в Нью-Йорке, который постоянно сильно раскачивался и едва не рухнул. Автор творения, которое собственной механикой подтверждает теорию, когда резонанс возникает от движения людей, даже хаотического - французский архитектор, автор подвесного моста Виадук Мийо, сооружения с самыми высокими опорными колоннами.

Инженеру пришлось потратить много времени и денег, чтобы снизить добротность системы пешеходного моста до приемлемого уровня и добиться того, чтобы не было значительных колебаний. Пример работы над данным проектом - это иллюстрация того, как последствия резонанса можно обуздать в системах с низкой добротностью.

Примеры, которые повторяют многие

Еще один пример, который даже участвует в анекдотах - это раскалывание посуды звуковыми колебаниями, от занятий на скрипке и даже пения. В отличие от роты солдат, данный пример неоднократно наблюдался и даже специально проверялся. Действительно, возникающий при совпадении частот резонанс приводит к раскалыванию тарелок, бокалов, чашек и другой посуды.

Это пример развития процесса в условиях системы с высокой добротностью. Материалы, из которых сделана посуда - это достаточно упругие среды , в которых колебания распространяются с малыми затуханиями. Добротность таких систем очень высока, и хотя полоса совпадения частот довольно узкая, резонанс приводит к сильному увеличению амплитуды, в результате чего материал разрушается.

Пример действия постоянной силы

Еще один пример, где проявилось разрушительное действие - это рухнувший Такомский подвесной мост. Данный случай и видео волнообразного раскачивания конструкции даже рекомендовано к просмотру на факультетах физики университетов, как самый хрестоматийный пример такого явления резонанса.

Разрушение подвесного моста под действием ветра - это иллюстрация того, как относительно постоянная сила вызывает резонанс. Происходит следующее:

  • порыв ветра отклоняет часть конструкции - внешняя сила способствует возникновению колебаний;
  • при обратном движении конструкции, сопротивления воздуха недостаточно, чтобы погасить колебание или снизить его амплитуду;
  • вследствие упругости системы, начинается новое движение, которое усиливает ветер, продолжающий дуть в одном направлении.

Это пример поведения комплексного объекта, где резонанс развивается на фоне высокой добротности и значительной упругости, под действием постоянного воздействия силы в одном направлении. К сожалению, Такомский мост - это не единственный пример обрушения конструкций. Случаи наблюдались и наблюдаются по всему миру, в том числе и в России.

Резонанс может применяться и в контролируемых, четко определенных условиях. Среди всего множества примеров можно легко вспомнить радиоантенны, даже разрабатываемые любителями. Здесь применяется принцип резонанса при поглощении энергии электромагнитной волны . Каждая система разрабатывается под отдельную полосу частот, в которой наиболее эффективна.

Установки МРТ применяют другой тип явления - различное поглощение колебаний клетками и структурами человеческого тела. Процесс ядерного магнитного резонанса использует излучение различной частоты. Резонанс, возникающий в тканях, приводит к легкому распознаванию конкретных структур. Меняя частоту, можно исследовать те или иные области, решать разнообразные задачи.

резонанс

Словарь медицинских терминов

Толковый словарь живого великорусского языка, Даль Владимир

резонанс

м. франц. зык, гул, рай, отзвук, отгул, гул, отдача, наголосок; звучность голоса, по местности, по размерам комнаты; звучность, звонкость музыкального орудия, по устройству его.

В рояле, фортепиано, гуслях: дек, палуба, стар. полочка, доска, по которой натянуты струны.

Толковый словарь русского языка. Д.Н. Ушаков

резонанс

резонанса, мн. нет, м. (от латин. resonans - дающий Отзвук).

    Ответное звучание одного из двух тел, настроенных в унисон (физ.).

    Способность увеличивать силу и длительность звука, свойственная помещениям, внутренняя поверхность к-рых может отражать звуковые волны. В концертном зале хороший резонанс. В комнате плохой резонанс.

    Возбуждение колебания тела, вызываемое колебаниями другого тела той же частоты и передаваемое находящейся между ними упругой средой (мех.).

    Соотношение между самоиндукцией и емкостью в цепи переменного тока, вызывающее максимальные электромагнитные колебания данной частоты (физ., радио).

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

резонанс

    Возбуждение колебаний одного тела колебаниями другого той же частоты, а также ответное звучание одного из двух тел, настроенных в унисон (спец.).

    Способность усиливать звук, свойственная резонаторам или помещениям, стены к-рых хорошо отражают звуковые волны. Р. скрипки.

    прил. резонансный, -ая, -ое (к 1 и 2 знач.). Резонансная ель (для изготовления музыкальных инструментов; спец.).

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

резонанс

    Возбуждение колебаний одного тела колебаниями другого той же частоты, а также ответное звучание одного из двух тел, настроенных в унисон.

    1. Способность усиливать звучание, свойственная резонаторам или помещениям, стены которых хорошо отражают звук.

Энциклопедический словарь, 1998 г.

резонанс

РЕЗОНАНС (франц. resonance, от лат. resono - откликаюсь) резкое возрастание амплитуды установившихся вынужденных колебаний при приближении частоты внешнего гармонического воздействия к частоте одного из собственных колебаний системы.

Резонанс

(франц. resonance, от лат. resono ≈ звучу в ответ, откликаюсь), явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы. В простейших случаях Р. наступает при приближении частоты внешнего воздействия к одной из тех частот, с которыми происходят собственные колебания в системе, возникающие в результате начального толчка. Характер явления Р. существенно зависит от свойств колебательной системы. Наиболее просто Р. протекает в тех случаях, когда периодическому воздействию подвергается система с параметрами, не зависящими от состояния самой системы (т. н. линейные системы). Типичные черты Р. можно выяснить, рассматривая случай гармонического воздействия на систему с одной степенью свободы: например, на массу m, подвешенную на пружине, находящуюся под действием гармонической силы F = F0 coswt (рис. 1 ), или электрическую цепь, состоящую из последовательно соединённых индуктивности L, ёмкости С, сопротивления R и источника электродвижущей силы Е, меняющейся по гармоническому закону (рис. 2 ). Для определенности в дальнейшем рассматривается первая из этих моделей, но всё сказанное ниже можно распространить и на вторую модель. Примем, что пружина подчиняется закону Гука (это предположение необходимо, чтобы система была линейна), т. е., что сила, действующая со стороны пружины на массу m, равна kx, где х ≈ смещение массы от положения равновесия, k ≈ коэффициент упругости (сила тяжести для простоты не принимается во внимание). Далее, пусть при движении масса испытывает со стороны окружающей среды сопротивление, пропорциональное её скорости ═и коэффициенту трения b, т. е. равное k (это необходимо, чтобы система оставалась линейной). Тогда уравнение движения массы m при наличии гармонической внешней силы F имеет вид: ═══(

    где F0≈ амплитуда колебания, w ≈ циклическая частота, равная 2p/Т, Т ≈ период внешнего воздействия, ═≈ ускорение массы m. Решение этого уравнения может быть представлено в виде суммы двух решений. Первое из этих решений соответствует свободным колебаниям системы, возникающим под действием начального толчка, а второе ≈ вынужденным колебаниям. Собственные колебания в системе вследствие наличия трения и сопротивления среды всегда затухают, поэтому по истечении достаточного промежутка времени (тем большего, чем меньше затухание собственных колебаний) в системе останутся одни только вынужденные колебания. Решение, соответствующее вынужденным колебаниям, имеет вид:

    причём tgj = . Т. о., вынужденные колебания представляют собой гармонические колебания с частотой, равной частоте внешнего воздействия; амплитуда и фаза вынужденных колебаний зависят от соотношения между частотой внешнего воздействия и параметрами системы.

    Зависимость амплитуды смещений при вынужденных колебаниях от соотношения между величинами массы m и упругости k легче всего проследить, полагая, что m и k остаются неизменными, а изменяется частота внешнего воздействия. При очень медленном воздействии (w ╝ 0) амплитуда смещений x0 »F0/k. С увеличением частоты w амплитуда x0 растет, т. к. знаменатель в выражении (2) уменьшается. Когда w приближается к значению ═(т. е. к значению частоты собственных колебаний при малом их затухании), амплитуда вынужденных колебаний достигает максимума ≈ наступает Р. Далее с увеличением w амплитуда колебаний монотонно убывает и при w ╝ ¥ стремится к нулю.

    Амплитуду колебаний при Р. можно приближённо определить, полагая w = . Тогда x0 = F0/bw, т. е. амплитуда колебаний при Р. тем больше, чем меньше затухание b в системе (рис. 3 ). Наоборот, при увеличении затухания системы Р. становится всё менее резким, и если b очень велико, то Р. вообще перестаёт быть заметным. С энергетической точки зрения Р. объясняется тем, что между внешней силой и вынужденными колебаниями устанавливаются такие фазовые соотношения, при которых в систему поступает наибольшая мощность (т. к. скорость системы оказывается в фазе с внешней силой и создаются наиболее благоприятные условия для возбуждения вынужденных колебаний).

    Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу, будет равен сумме эффектов от отдельных гармонических воздействий. Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия.

    В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С и индуктивности L (рис. 2 ), Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности (рис. 4 ), имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов.

    В линейной системе с двумя степенями свободы, в частности в двух связанных системах (например, в двух связанных электрических контурах; рис. 5 ), явление Р. сохраняет указанные выше основные черты. Однако, т. к. в системе с двумя степенями свободы собственные колебания могут происходить с двумя различными частотами (т. н. нормальные частоты, см. Нормальные колебания), то Р. наступает при совпадении частоты гармонического внешнего воздействия как с одной, так и с другой нормальной частотой системы. Поэтому, если нормальные частоты системы не очень близки друг к другу, то при плавном изменении частоты внешнего воздействия наблюдаются два максимума амплитуды вынужденных колебаний (рис. 6 ). Но если нормальные частоты системы близки друг к другу и затухание в системе достаточно велико, так что Р. на каждой из нормальных частот «тупой», то может случиться, что оба максимума сольются. В этом случае кривая Р. для системы с двумя степенями свободы теряет свой «двугорбый» характер и по внешнему виду лишь незначительно отличается от кривой Р. для линейного контура с одной степенью свободы. Т. о., в системе с двумя степенями свободы форма кривой Р. зависит не только от затухания контура (как в случае системы с одной степенью свободы), но и от степени связи между контурами.

    В связанных системах также существует явление, которое в известной мере аналогично явлению антирезонанса в системе с одной степенью свободы. Если в случае двух связанных контуров с различными собственными частотами настроить вторичный контур L2C2 на частоту внешней эдс, включенной в первичный контур L1C1 (рис. 5 ), то сила тока в первичном контуре резко падает и тем резче, чем меньше затухание контуров. Объясняется это явление тем, что при настройке вторичного контура на частоту внешней эдс в этом контуре возникает как раз такой ток, который в первичном контуре наводит эдс индукции, примерно равную внешней эдс по амплитуде и противоположную ей по фазе.

    В линейных системах со многими степенями свободы и в сплошных системах Р. сохраняет те же основные черты, что и в системе с двумя степенями свободы. Однако в этом случае, в отличие от систем с одной степенью свободы, существенную роль играет распределение внешнего воздействия по отдельным координатам. При этом возможны такие специальные случаи распределения внешнего воздействия, при которых, несмотря на совпадения частоты внешнего воздействия с одной из нормальных частот системы, Р. всё же не наступает. С энергетической точки зрения это объясняется тем, что между внешней силой и вынужденными колебаниями устанавливаются такие фазовые соотношения, при которых мощность, поступающая в систему от источника возбуждения по одной координате, равна мощности, отдаваемой системой источнику по другой координате. Пример этого ≈ возбуждение вынужденных колебаний в струне, когда внешняя сила, совпадающая по частоте с одной из нормальных частот струны, приложена в точке, которая соответствует узлу скоростей для данного нормального колебания (например, сила, совпадающая по частоте с основным тоном струны, приложена у самого конца струны). При этих условиях (вследствие того, что внешняя сила приложена к неподвижной точке струны) эта сила не совершает работы, мощность от источника внешней силы в систему не поступает и сколько-нибудь заметного возбуждения колебаний струны не возникает, т. е. Р. не наблюдается.

    Р. в колебательных системах, параметры которых зависят от состояния системы, т. е. в нелинейных системах, имеет более сложный характер, чем в системах линейных. Кривые Р. в нелинейных системах могут стать резко несимметричными, и явление Р. может наблюдаться при различных соотношениях частот воздействия и частот собственных малых колебаний системы (т. н. дробный, кратный и комбинационный Р.). Примером Р. в нелинейных системах может служить т. н. феррорезонанс, т. е. резонанс в электрической цепи, содержащей индуктивность с ферромагнитным сердечником, или ферромагнитный резонанс , представляющий собой явление, связанное с Р. элементарных (атомных) магнитов вещества при приложении высокочастотного магнитного поля (см. Радиоспектроскопия).

    Если внешнее воздействие производит периодические изменение энергоёмких параметров колебательной системы (например, ёмкости в электрическом контуре), то при определённых соотношениях частот изменения параметра и собственной частоты свободных колебаний системы возможно параметрическое возбуждение колебаний , или параметрический Р.

    Р. весьма часто наблюдается в природе и играет огромную роль в технике. Большинство сооружений и машин способны совершать собственные колебания, поэтому периодические внешние воздействия могут вызвать их Р.; например Р. моста под действием периодических толчков при прохождении поезда по стыкам рельсов, Р. фундамента сооружения или самой машины под действием не вполне уравновешенных вращающихся частей машин и т. д. Известны случаи, когда целые корабли входили в Р. при определённых числах оборотов гребного вала. Во всех случаях Р. приводит к резкому увеличению амплитуды вынужденных колебаний всей конструкции и может привести даже к разрушению сооружения. Это вредная роль Р., и для устранения его подбирают свойства системы так, чтобы её нормальные частоты были далеки от возможных частот внешнего воздействия, либо используют в том или ином виде явление антирезонанса (применяют т. н. поглотители колебаний, или успокоители). В др. случаях Р. играет положительную роль, например: в радиотехнике Р. ≈ почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций.

    Лит.: Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Горелик Г. С., Колебания и волны, Введение в акустику, радиофизику и оптику 2 изд. М., 1959.

Википедия

Резонанс

Резона́нс - явление, при котором амплитуда вынужденных колебаний имеет максимум при некотором значении частоты вынуждающей силы. Часто это значение близко к частоте собственных колебаний, фактически может совпадать, но это не всегда так и не является причиной резонанса.

В результате резонанса при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротностью. При помощи резонанса можно выделить и/или усилить даже весьма слабые периодические колебания.

Явление резонанса впервые было описано Галилео Галилеем в 1602 г. в работах, посвященных исследованию маятников и музыкальных струн.

Примеры употребления слова резонанс в литературе.

Нестабильность вселенной способна возбудить автоколебания близлежащих сюжетных линий, возникает резонанс , затем система схлопывается и.

Там он продолжил работу по изучению физических явлений, известных в науке как эффекты Заебека и Пельтье, в условиях двойного синфазного пьезоэлектрического резонанса , открытого им во время обучения в адъюнктуре и детально описанного в его кандидатской диссертации.

Если от резонанса может разрушиться здание, то этот пятитактовый аллюр может уничтожить Стайла.

Биржевой крах немедленно отозвался международным резонансом : в течение нескольких дней большинство европейских рынков, в том числе и такой обычно устойчивый к потрясениям, как швейцарский, понесли еще большие потери, чем Уолл-Стрит.

Сооружение кишит электриками, которые наблюдают за тем, как на блестящие стены башни изнутри напыляют слой проводящего волокна механики, которые устанавливают изоляционные трубки, волноводы, преобразователи частоты, измерители светового потока, аппаратуру оптической связи, локаторы фокальной плоскости, стержни нейтронной активации, поглотители Мессбауэра, многоканальные анализаторы амплитуды импульса, ядерные усилители, преобразователи напряжения, криостаты, импульсные повторители, мостики сопротивлений, оптические призмы, торсионные тестеры, всевозможные датчики, размагничиватели, коллиматоры, ячейки магнитного резонанса , усилители на термопарах, рефлекторы-ускорители, протонные накопители и многое, многое другое, в точном соответствии с планом, находящимся в памяти компьютера и включающим в себя для каждого прибора номер этажа и координаты на блок-схеме.

Особые излучения, пронизывая ванны, вызывают резонанс колебаний атомов дейтерия и микроструктур тела, обеспечивая сохранение всех функций организма.

Я полагаю, эти книги и впредь будут увлекать нас за собой в загадочном резонансе с произведениями Клоссовски - еще одним крупным и исключительным именем.

Пользы от раскрытого агента нет, а помех предвидится много, и проще от него избавиться, хотя бы для того, чтобы избежать возможных компрометантных разговоров с широким резонансом .

Божественный дар глубокого и мощного ума, осознание присутствия которого пришло еще в юности, наделенность гением духовного наставничества, в резонансе с которым оказался весь мир, и гением художественным, для определения которого и слов, пожалуй, не подберешь - несравненным, и одновременно с этим - внешнее житейское благоденствие, талантливая и достойная семья, многочисленная - и все это редкостно величественно, исчерпывающе, и в этом именно смысле тоже гармонично.

Запутавшись в паутине проводов, точно заколка в распущенных женских волосах, мерно раскачивалась на ветру новая установка парамагнитного резонанса .

Копвиллемом и другими акустический электронный и ядерный магнитные резонансы обнаружены в настоящее время во множестве кристаллов, содержащих парамагнитные примеси.

Близость к суровому учителю, занимающему верхнюю позицию, и правильный полный резонанс в благотворно действующей второй позиции делает это положение вполне счастливым.

Конечно, отношения с Михаилом тоже, как и все полигамные сексуальные влечения, были резонансом встреч в прошлой жизни с разными персонами, потерянными и снова встреченными в текущей реальности.

В результате увлекательного приключения, в которое вылилась попытка отвести в сторону поток лавы, изменился даже характер моей книги, которая сейчас подходит к концу: захватывающие технические подробности, огромный общественный резонанс этой операции, наконец, тот невероятный интерес, который данный проект вызвал лично у меня, все это никуда не уходило за пять последних месяцев, пока я писал вторую половину моей книги, и то, о чем я ранее намеревался рассказать в последних шести главах, растаяло за голубоватыми дымками, вьющимися над потоками лавы.

Желание знатной сверловщицы получило настолько шумный резонанс , что было решено устроить общественный показ ее трудовых достижений.

Внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность . Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн .

Механика

Наиболее известная большинству людей механическая резонансная система - это обычные качели . Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

,

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности - процесс, который повторяется многократно, по аналогии с механическим маятником.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

,

где ; f - резонансная частота в герцах; L - индуктивность в генри ; C - ёмкость в фарадах . Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания , то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы .

СВЧ

В СВЧ электронике широко используются объёмные резонаторы , чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны , в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями. Наивысшей добротностью обладают сверхпроводящие резонаторы, стенки которых изготовлены из сверхпроводника и диэлектрические резонаторы с модами шепчущей галереи .

Оптика

Акустика

Резонанс - один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы , например, струны и корпус скрипки , трубка у флейты , корпус у барабанов .

Астрофизика

Орбитальный резонанс в небесной механике - это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты.

Резонансный метод разрушения льда

Известно, что при движении нагрузки по ледяному покрову развивается система изгибных гравитационных волн (ИГВ). Это сочетание изгибных колебаний пластины льда и связанных с ними гравитационных волн в воде. Когда скорость нагрузки близка к минимальной фазовой скорости от ИГВ, вода прекращает поддержку ледяного покрова и поддержка осуществляется только упругими свойствами льда. Амплитуда ИГВ резко возрастает, и с достаточной нагрузкой, начинается разрушения. Потребляемая мощность в несколько раз ниже (в зависимости от толщины льда) по сравнению с ледоколами и ледокольными навесными оборудованиями. Этот метод разрушения льда известен как резонансный метод разрушения льда Ученый Козин, Виктор Михайлович получил экспериментальные теоретические кривые, которые показывают возможности своего метода .

Примечания

См. также

Литература

  • Richardson LF (1922), Weather prediction by numerical process, Cambridge.
  • Bretherton FP (1964), Resonant interactions between waves. J. Fluid Mech. , 20, 457-472.
  • Бломберген Н. Нелинейная оптика, М.: Мир, 1965. - 424 с.
  • Захаров В. Е. (1974), Гамильтонов формализм для волн в нелинейных средах с дисперсией, Изв. вузов СССР. Радиофизика , 17(4), 431-453.
  • Арнольд В. И. Потеря устойчивости автоколебаний вблизи резонансов, Нелинейные волны / Ред. А. В. Гапонов-Грехов. - М.: Наука, 1979. С. 116-131.
  • Kaup PJ, Reiman A and Bers A (1979), Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys , 51 (2), 275-309.
  • Haken H (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.
  • Филлипс O.М. Взаимодействие волн. Эволюция идей, Современная гидродинамика. Успехи и проблемы. - М.: Мир, 1984. - С. 297-314.
  • Журавлёв В. Ф., Климов Д. М. Прикладные методы в теории колебаний. - М.: Наука, 1988.
  • Сухоруков А.П Нелинейные волновые взаимодействия в оптике и радиофизике. - М.: Наука, 1988. - 232 с.
  • Брюно А. Д. Ограниченная задача трёх тел. - М.: Наука, 1990.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

    Резонанс - Резонанс: а резонансные кривые линейных осцилляторов при различной добротности Q(Q3>Q2>Q1), x интенсивность колебаний; б зависимость фазы от частоты при резонансе. РЕЗОНАНС (французское resonance, от латинского resono откликаюсь), резкое… … Иллюстрированный энциклопедический словарь

    РЕЗОНАНС, резонанса, мн. нет, муж. (от лат. resonans дающий отзвук). 1. Ответное звучание одного из двух тел, настроенных в унисон (физ.). 2. Способность увеличивать силу и длительность звука, свойственная помещениям, внутренняя поверхность… … Толковый словарь Ушакова

    Отзвук, резонон, мезомерия, отклик, адрон, частица, отголосок Словарь русских синонимов. резонанс см. отклик Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2 … Словарь синонимов

    РЕЗОНАНС, резкое увеличение амплитуды колебаний механической или акустической системы, в случае вынужденных колебаний, вызванных внешним источником. Это явление возникает, когда ЧАСТОТА приложенной силы равна собственной частоте колебаний системы … Научно-технический энциклопедический словарь

    - (франц. resonance от лат. resono откликаюсь), резкое возрастание амплитуды установившихся вынужденных колебаний при приближении частоты внешнего гармонического воздействия к частоте одного из собственных колебаний системы … Большой Энциклопедический словарь

    РЕЗОНАНС, а, муж. 1. Возбуждение колебаний одного тела колебаниями другого той же частоты, а также ответное звучание одного из двух тел, настроенных в унисон (спец.). 2. Способность усиливать звук, свойственная резонаторам или помещениям, стены к … Толковый словарь Ожегова

    Муж., франц. зык, гул, рай, отзвук, отгул, гул, отдача, наголосок; звучность голоса, по местности, по размерам комнаты; звучность, звонкость музыкального орудия, по устройству его. | В рояле, фортепиано, гуслях: дек, палуба, ·стар. полочка, доска … Толковый словарь Даля

    - (от лат. resonare – повторять) колебания одного из колеблющихся тел, «настроенных» на определенное число колебаний (все тела более или менее способны производить их), которые взаимодействуют с колебаниями, производимыми др. телом, колеблющимся с… … Философская энциклопедия

    1. В общем механическом смысле отклик тела, способного колебаться с определенным периодом (т. наз. собственным периодом колебаний), на дошедшие до него колебания того же периода. Явления Р. выражаются обычно в значительном увеличении амплитуды… … Морской словарь


Вполне привычная картина - концертный зал, на сцене скрипач-виртуоз, зал заполнен многочисленными любителями музыки, внимающими чарующим звукам. Не касаясь мастерства исполнителя, все происходящее становится возможным благодаря эффекту акустического резонанса. Так резонанс?

При упоминании этого термина сразу же вспоминается старинная история о ротой марширующих солдат. Бойцы, взойдя на него, продолжали идти строевым шагом, в ногу. В результате мост разрушился.

Или самая обычная картинка - ребенок на качелях. И кто-то рядом, раскачивающий их. Незначительные усилия, прикладываемые в нужный момент, позволяют добиться большой амплитуды колебаний и доставить малышу огромное удовольствие.

Не вдаваясь в математическое описание происходящего явления, попробуем качественно понять, что такое резонанс. Учебник физики определяет этот эффект как усиление амплитуды колебаний системы при совпадении частоты внешнего воздействия и собственной частоты. Небольшое пояснение. Частота колебаний - число колебаний в секунду.

Да, не совсем понятно, слова вроде бы все знакомые - резонанс, физика, частота А что это значит?

Для простоты восприятия вспомним другой пример - между двух опор (пусть это будут два берега ручья) лежит длинная широкая доска, она немного покачивается, колеблется, но выглядит надежной. Перейти через ручей вроде бы просто, вставай на доску и иди. Но вот какая незадача. При какой-то определённой скорости движения, или по-другому говоря, частоте шагов, доска начинает сильно раскачиваться, угрожая сбросить ходока. В этом случае опять выполняются условия резонанса - частота колебаний самой доски совпадает с частотой шагов пешехода. В результате амплитуда колебаний значительно увеличивается, итогом такого усиления могут стать неожиданные водные процедуры.

Подобное явление чрезвычайно широко распространено в самых разных областях. В электронике, медицине, в музыке, с чего и началось описание эффекта резонанса. Такое явление зачастую бывает полезным, позволяя, например, усиливать слабый сигнал. Звук струны скрипки усиливается ее корпусом, выступающим как резонатор, т.е. усилитель на какой-то определенной частоте. А звук самой скрипки усиливается благодаря хорошей акустике помещения.

Немного другое применение резонанса - усиление сигнала радиостанции. Опять все просто. Радиоволны доносят сигнал до антенны, оттуда он поступает в специальный входной контур, изменяя параметры которого можно усиливать сигнал нужной частоты. Этим мы и занимаемся, когда крутим ручку настройки приемника в поисках нужной нам радиостанции. В результате такого усиления сигнал выделенной радиостанции становится сильнее и успешно воспринимается приемником.

Из приведенных примеров становится понятным ответ на вопрос о том, что такое резонанс. Это общее увеличение усилия, полученное благодаря синхронизации возможностей самой системы и внешнего воздействия. Как итоговый пример - попытка выбраться из грязи на автомобиле методом “раскачки”. Водитель начинает попеременно двигаться на машине вперед и назад. Назад, затем разгон вперед, при неудаче опять разгон, но уже назад, и опять вперед. При таком подходе мощность двигателя суммируется с инерцией движения и во многих случаях позволяет преодолеть трудное место.

Даже того скромного количества приведенных примеров достаточно для понимания того, насколько широко применяется явление резонанса в технике и повседневной жизни.

В приведенном материале дан ответ на вопрос о том, что такое резонанс. Рассмотрены примеры проявления резонансных явлений в различных областях техники и культуры.