Тонкая линза определение. Собирающей и рассеивающей линз

Простые линзы бывают двух различных типов:положительные и отрицательные. Эти два типа известны также как собирательные и рассеивающие, потому что положительные линзы собирают свет и образуют изображение источника, тогда как отрицательные линзы рассеивают свет.

Характеристики простых линз

В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием.

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленнойдисперсией света, - ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

Виды линз: Собирающие : 1 - двояковыпуклая 2 - плоско-выпуклая 3 - вогнуто-выпуклая (положительный(выпуклый) мениск) Рассеивающие : 4 - двояковогнутая 5 - плоско-вогнутая 6 - выпукло-вогнутая (отрицательный(вогнутый) мениск)

Использование линзы для изменения формы волнового фронта. Здесь плоский волновой фронт становится сферическим при прохождении через линзу

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине), рассеивающей (утолщается к краям) или телескопической (фокусное расстояние равно бесконечности). Так, например линзы очков для близоруких - как правило, отрицательные мениски.

Вопреки распространённому заблуждению, оптическая сила мениска с одинаковыми радиусами не равно нулю, а положительна, и зависит от показателя преломления стекла и от толщины линзы. Мениск, центры кривизны поверхностей которого находятся в одной точке называется концентрической линзой (оптическая сила всегда отрицательна).

Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.


Основные элементы линзы: NN - оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре). Примечание . Ход лучей показан, как в идеализированной (тонкой) линзе, без указания на преломление на реальной границе раздела сред. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса .

Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется фокусом F’, а расстояние от центра линзы до фокуса - фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .


Мнимый фокус рассеивающей линзы

Сказанное о фокусе на оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на наклонной линии, проходящей через центр линзы под углом к оптической оси. Плоскость, перпендикулярная оптической оси, расположенная в фокусе линзы, называется фокальной плоскостью .

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса - передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от главных точек линзы.

а) Типы линз .

Оптические линзы, которые в середине толще, чем на краю, называются собирающими; напротив, если край толще, чем середина, то линзы действуют как


рассеивающие. По форме поперечного сечения различают: двояковыпуклые, плоско-выпуклые, вогнуто-выпуклые собирающие линзы; двояковогнутые, плоско-вогнутые, выпукло-вогнутые рассеивающие линзы.

Тонкие линзы в первом приближении можно рассматривать как две сложенные тонкие призмы (рис.217, 218). Ход лучей можно проследить на шайбе Гартля.


Собирающая линза концентрирует параллельные лучи в одной точке за линзой, в фокусе (рис.219)

Рассеивающая линза превращает параллельный пучок лучей в расходящийся пучок, который кажется выходящим из фокуса (рис.220).

Простейшей центрированной оптической системой является линза. Она представляет собой прозрачное (обычно стеклянное) тело, ограниченное двумя сферическими поверхностями (в частном случае одна из поверхностей может быть плоской). Точки пересечения поверхностей с оптической осью линзы называются вершинами преломляющих поверхностей. Расстояние между вершинами именуется толщиной линзы. Если толщиной линзы можно пренебречь по сравнению с меньшим из радиусов кривизны ограничивающих линзу поверхностей, линза называется тонкой.

Расчеты, которых мы не приводим, дают, что в случае тонкой линзы главные плоскости Н и Н можно считать совпадающими и проходящими через центр линзы О (рис. 117.1). Для фокусных расстояний тонкой линзы получается выражение

здесь - показатель преломления линзы, по - показатель преломления среды, окружающей линзу, - радиусы кривизны поверхностей линзы.

С радиусами кривизны нужно обращаться, как с алгебраическими величинами: для выпуклой поверхности (т. е. в случае, когда центр кривизны лежит справа от вершины) радиус кривизны нужно считать положительным, для вогнутой поверхности (т. е. в случае, когда центр кривизны лежит слева от вершины) радиус нужно считать отрицательным. На чертежах указывается модуль радиуса кривизны, т. е. -R, если R Если показатели преломления сред, находящихся по обе стороны тонкой линзы, одинаковы, то узлы N и N совпадают с главными точками, т. е. помещаются в центре линзы О.

Следовательно, в этом случае любой луч, идущий через центр линзы, не изменяет своего направления. Если показатели преломления сред перед и за линзой неодинаковы, узлы не совпадают с главными точками, так что луч, идущий через центр линзы, претерпевает излом.

Параллельный пучок лучей после прохождения через линзу собирается в одной из точек фокальной плоскости (см. точку Q на рис. 117.2). Чтобы определить положение этой точки, нужно продолжить идущий через центр линзы луч до пересечения его с фокальной плоскостью (см. изображенный пунктиром луч ). В точке пересечения соберутся и остальные лучи. Такой способ пригоден в том случае, если оптические свойства среды по обе стороны линзы одинаковы . В противном случае луч, идущий через иентр, терпит излом. Для нахождения точки Q в этом случае нужно знать положение узловых точек линзы.

Отметим, что отложенные вдоль лучей пути, начинающиеся на волновой поверхности (см. рис. 117.2) и заканчивающиеся в точке Q, имеют одинаковую оптическую длину и являются таутохронными (см. конец § 115).

В заключение надо сказать, что линза является далеко не идеальной оптической системой. Даваемые ею изображения предметов обладают рядом погрешностей. Однако рассмотрение этих погрешностей выходит за рамки данной книги.

Раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах, называется геометрической оптикой. Под световыми лучами понимаются нормальные к волновым поверхностям линии, вдоль которых распространяется поток световой энергии. Геометрическая оптика, оставаясь приближенным методом построения изображений в оптических системах, позволяет разобрать основные явления, связанные с прохождением через них света, и является поэтому основой теории оптических приборов.

Линзы представляют собой прозрачные тела, ограниченные двумя поверхностями (одна из них обычно сферическая, иногда цилиндрическая, а вторая - сферическая или плоская), преломляющими световые лучи, способные формировать оптические изображения предметов. Материалом для линз служат стекло, кварц, кристаллы, пластмассы и т. п. По внешней форме (рис. 232) линзы делятся на: 1) двояковыпуклые; 2) плосковыпуклые; 3) двояковогнутые; 4) плосковогнутые; 5) выпукло-вогнутые; 6) вогнуто-выпуклые. По оптическим свойствам линзы делятся на собирающие и рассеивающие.

Линза называется тонкой, если ее толщина (расстояние между ограничивающими поверхностями) значительно меньше по сравнению с радиусами поверхностей, ограничивающих линзу. Прямая, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью.


Длявсякой линзы существует точка, называемая оптическим центром линзы,

лежащая на главной оптической оси и обладающая тем свойством, что лучи проходят сквозь нее не преломляясь. Для простоты оптический центр О линзы будем считать совпадающим с геометрическим центром средней части линзы (это справедливо только для двояковыпуклой и двояковогнутой линз с одинаковыми радиусами кривизны обеих поверхностей; для плосковыпуклых и плосковогнутых линз оптический центр О лежит на пересечении главной оптической оси со сферической поверхностью).

Для вывода формулы тонкой линзы - соотношения, связывающего радиусы кривизны R 1 и R 2 поверхностей линзы с расстояниями а и b от линзы до предмета и его изображения,- воспользуемся принципом Ферма , или принципом наименьшего времени: действительный путь распространения света (траектория светового луча) есть путь, для прохождения которого свету требуется минимальное время по сравнению с любым другим мыслимым путем между теми же точками.

Рассмотрим две траектории светового луча (рис. 233) - прямую, соединяющую точки А к В (луч ЛОВ), и траекторию, проходящую через край линзы (луч АСВ ) , - воспользовавшись условием равенства времени прохождения света по этим траекториям. Время прохождения света по траектории A ОВ

где N= n / n 1 - относительный показатель преломления (n и n 1 - соответственно абсолютные показатели преломления линзы и окружающей среды). Время прохождения света по траектории АСВ равно


Рассмотрим параксиальные (приосевые) лучи, т. е. лучи, образующие с оптической осью малые углы. Только для параксиальных лучей получается стигматическое изображение, т. е. все лучи параксиального пучка, исходящего из точки А, пересекают оптическую ось в одной и той же точке В. Тогда h<<(а+е), h<<(b+d) и

Аналогично,

Подставив найденные выражения в (166.1), получим

Для тонкой линзы е<<а и d<

Учитывая, что e=R 2 - (R 2 -h 2)=R 2 -R 2 (1-h 2 /R 2 2)= R 2 -R 2 =h 2 /(2R 2) и соответственно d=h 2 /(2R 1), получим

Выражение (166.3) представляет собой формулу тонкой линзы. Радиус кривизны выпуклой поверхности линзы считается положительным, вогнутой - отрицательным. Если а=, т.е. лучи падают на линзу параллельным пучком (рис. 234. а), то

Соответствующее этому случаю расстояние b=OF=f называется фокусным расстоянием линзы:

Оно зависит от относительного показателя преломления и радиусов кривизны.

Если b=, т.е. изображение находится в бесконечности и, следовательно, лучи выходят из линзы параллельным пучком (рис. 234, б), то a=OF=f. Таким образом, фокусные расстояния линзы, окруженной с обеих сторон одинаковой средой, равны. Точки F, лежащие по обе стороны линзы на расстоянии, равном фокусному, называются фокусами линзы. Фокус - это точка, в которой после преломления собираются все лучи, падающие на линзу параллельно главной оптической оси. Величина

называется оптической силой линзы. Ее единица-диоптрия (дптр). Диоптрия - оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр=1/м.

Линзы с положительной оптической силой являются собирающими, с отрицательной - рассеивающими. Плоскости, проходящие через фокусы линзы перпендикулярно ее главной оптической оси, называются фокальными плоскостями. В отличие от собирающей рассеивающая линза имеет мнимые фокусы. В мнимом фокусе сходятся (после преломления) воображаемые продолжения лучей, падающих на рассеивающую линзу параллельно главной оптической оси (рис.235).

Учитывая (166.4), формулу линзы (166.3) можно записать в виде

Для рассеивающей линзы расстояния f и b надо считать отрицательными.

Построение изображения предмета в линзах осуществляется с помощью следующих лучей:

1) луча, проходящего через оптический центр линзы и не изменяющего своего направления;

2) луча, идущего параллельно главной оптической оси; после преломления в линзе этот луч (или его продолжение) проходит через второй фокус линзы;

3) луча (или его продолжения), проходящего через первый фокус линзы; по-

сле преломления в ней он выходит из линзы параллельно ее главной оптической оси.

Для примера приведены построения изображений в собирающей (рис. 236) и в рассеивающей (рис. 237) линзах: действительное (рис. 236, а) и мнимое (рис. 236, б) изображения - в собирающей линзе, мнимое - в рассеивающей.

Отношение линейных размеров изображения и предмета называется линейным увеличением линзы. Отрицательным значениям линейного увеличения соответствует действительное изображение (оно перевернутое), положительным - мнимое изображение (оно прямое). Комбинации собирающих и рассеивающих линз применяются в оптических приборах, используемых для решения различных научных и технических задач.

Цель работы : изучить понятие тонкой линзы и ее основные характеристики, ознакомиться с устройством стенда и методами определения фокусного расстояния линз, определить фокусное расстояние и оптическую силу собирающей и рассеивающей линз различными способами.

Приборы и принадлежности : оптическая скамья с миллиметровой шкалой, собирающая и рассеивающая линзы, осветитель с масштабной сеткой на матовом стекле, экран.

Теория работы

Линзой называется любое прозрачное тело, ограниченное двумя криволинейными (сферическими или несферическими) поверхностями или одной криволинейной и одной плоской поверхностью. Линзы разделяются на два типа: собирающие и рассеивающие . Если середина линзы толще краев, то линза является собирающей. Если же середина линзы тоньше краев, то линза является рассеивающей. Эти определения справедливы для линз, имеющих показатель преломления материала линзы больше, чем показатель преломления среды, из которой лучи падают на поверхность линзы.

Линзы применяются для получения изображений и изменения направления световых пучков. Линзы бывают толстые и тонкие. Тонкой называется линза, толщина которой мала по сравнению с радиусом кривизны ограничивающих ее поверхностей.

На рис. 1 показана тонкая собирающая линза, предмет АВ и его изображение А 1 В 1 , а на рис. 2 – тонкая рассеивающая линза, предмет и его изображение.

Рис. 1 Рис. 2

Прямая О 1 О 2 , проходящая через центры сферических поверхностей линзы, называется ееглавной оптической осью.

У каждой линзы имеетсяоптический центр (точка С), лежащий на ее оптической оси. Луч света, проходя в тонкой линзе через ее оптический центр, линзой не преломляется.

Плоскость, перпендикулярная оптической оси и проходящая через оптический центр С, называется главнойплоскостью линзы. Главными фокусами линзы F 1 (передним) и F 2 (задним) называются точки на главной оптической оси, в которых пересекаются после преломления в линзе лучи, падающие на нее параллельно главной оптической оси.



Расстояние главных фокусов от оптического центра линзы (расстояния CF 1 = = f 1 , CF 2 = f 2) называютсяглавными фокусными расстояниями и являются основными характеристиками линзы. Если слева и справа от линзы среда одинакова, то f 1 =

= f 2 = f . Для собирающих линз главное фокусное расстояние f – величина положительная, для рассеивающих – отрицательная. Для рассеивающих линз фокусы являются мнимыми, так как определяются пересечением с главной оптической осью не самих преломленных в линзе лучей, а их продолжений – мнимых лучей (рис. 2).

Величина, обратная фокусному расстоянию линзы, называется оптическойсилой линзы: . Единицей измерения оптической силы линзы является диоптрия (дптр). Оптической силой в одну диоптрию обладает линза, у которой фокусное расстояние равно одному метру.

Плоскости, проходящие через главные фокусы F 1 и F 2 линзы перпендикулярно к ее главной оптической оси, называются фокальными плоскостями линзы. В них пересекаются после преломления в линзе лучи, падающие под углом к главной оптической оси.

Рассмотрим тонкую собирающую линзу (рис. 1). Для построения изображения предмета в ней используют лучи, ход которых через линзу известен. Обычно берут два луча (рис. 1): луч 1, проходящий через оптический центр C (он пройдет через линзу, не преломляясь), и луч 2, падающий на линзу параллельно ее главной оптической оси (этот луч при выходе из линзы пройдет через ее задний фокус F 2).

Изображение предмета А 1 В 1 в зависимости от того, на каком расстоянии от линзы будет находиться предмет АВ, может получиться увеличенным (как на рис. 1) или уменьшенным, прямым или обратным, действительным или мнимым. Мнимым изображением называется изображение, получающееся в результате пересечения не самих лучей, преломленных в линзе, а их продолжений.

Обозначим на рис. 1 через а - расстояние от предмета до линзы, b - расстояние от линзы до изображения, f - фокусное расстояние линзы. Зависимость между а , b и f для собирающей линзы дается формулой линзы:

откуда определяется фокусное расстояние линзы:

Линейным увеличением k линзы называется отношение размера изображе-

ния А 1 В 1 предмета к соответствующему размеру предмета АВ. Линейное увеличение, даваемое тонкой линзой, будет:

(3)

В лабораторной работе для определения главного фокусного расстояния линз используется оптическая скамья. Скамья имеет миллиметровую шкалу по всей длине. Вдоль скамьи могут перемещаться на рейтерах: предмет (освещенное лампой матовое стекло с масштабной сеткой), линзы и экран. На рейтере с линзами расположены две линзы: собирающая (укреплена неподвижно) и рассеивающая (поворачивающаяся вокруг точки крепления). Перед проведением измерений предмет, линзы и экран нужно установить так, чтобы их центры лежали на одной прямой, параллельной оси оптической скамьи, а их плоскости были перпендикулярны этой оси.